SYNTHESIS OF ISOAJMALINE
 Kiyohiko Mashimo and Yasuhiko Sato

Organic Chemistry Research Laboratory, Tanabe Seiyaku Co., Ltd.
Toda, Saitama, Japan.
(Received in Japan 26 December 1968; received in UK for publication 4 F'ebruary 1969)
Total synthesis of ajmaline (II) was first reported in 1967 by S.Masamune et a1 ${ }^{1)}$. In the present communication we wish to describe the first synthesis of isoajmaline (I), a naturai base, which is stereoisomeric with ajmaline at C_{20} and 21 .

1

\|

As the preliminary for our ultimate purpose we attempted to synthesize (VI), having fundamental molecular framework of both ajmaline and isoajmaline.

Thus the compound (III), whose preparation from tryptophan had already been recorded by $N . Y_{0}$ Y $^{2}{ }^{2)}$ in our laboratory, was subjected to ketone rission reaction by heating with acetic-hydrochloric acid mixture to give ketone (IV) (mp. 133°, $\mathrm{IR}_{\text {nujol }} 1700 \mathrm{~cm}^{-1}(\mathrm{C}=0$), yield 80%). This was treated either with dimethyloxosulfonium methylide or dimethylsulfonium methylide ${ }^{3 \text {) }}$ in DMSO according to Corey to furnish the corresponding oxirane derivative (v)

On being treated with $\mathrm{HAlCl}_{2}{ }^{4}$) in anhydrous ether the oxirane ring in (V) was reductively cleaved yielding (VI) in 72% yield. (IR $3200 \mathrm{~cm}^{-1}$ (OH), 0-acetyl mp. 129-130 $) ~(C h a r t 1)$.

In order to extend the above reaction sequence to the synthesis of ajmaline type of compound we undertook to graft $-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CN}$ side chain at 8 -posetion

[^0]

Chart 1

$X \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} \quad \mathrm{XII} \mathrm{R}=\mathrm{COPh}$

13a

XI $R=H$

Chart 2

of (IV). After numbers of fruitless experimentation we succeeded to condense the ketone (IV) with n-propanal by means of triton-B to obtain the propylidene derivative (VII) in 54% yield, ($\mathrm{mp}, 114-125^{\circ}, 1 \mathrm{R}_{\mathrm{nujol}} 1680 \mathrm{~cm}^{-1}(\mathrm{C}=0), 1610 \mathrm{~cm}^{-1}$ $(C=C), \quad N M R_{\text {CDCl }}$ olefin-H $3.2 T$ triplet), which underwent smooth hydrocyanation reaction with $\mathrm{KCN}-\mathrm{NH}_{4} \mathrm{C1} 5$) to furnish (VIII) (mp. 186-1890(decompd.), IR 2250 $\mathrm{cm}^{-1}(\mathrm{CN}), 1715 \mathrm{~cm}^{-1}(\mathrm{C}=0)$, yield $\left.54 \%\right)$. The lather was now converted to oxifante (IX) (IR $2250 \mathrm{~cm}^{-1}(\mathrm{CN}), 910 \mathrm{~cm}^{-1}$ (oxirane), yield50\%, picrate mp. $164-1660$ (decompd.)) as before, followed by reductive cleavage of the oxirane ring with AlH_{3}^{4}) in anhydrous ether. The resultant carbinol (X) (mp. $137-1390$, 1 R 3000 $\mathrm{cm}^{-1}(\mathrm{OH}), 2250 \mathrm{~cm}^{-1}(\mathrm{CN})$, yield $5^{\prime} \%$ \% was submitted to hydrogenolysis over log Pd-C to give the debenzylated base (XI) (mp. 212.5-213.5 (decompd.), JR 3250 $\mathrm{cm}^{-1}(\mathrm{OH}, \mathrm{NH}), 2250 \mathrm{~cm}^{-1}(\mathrm{CN})$, yield $\left.58 \%\right)$, of which dibenzoyl derivative (mp. 10G-1080, was prepared with an excess of benzoyl chloride-pyridine. when the latter was subjected to brief treatment with ch ona in methanol, O-benzoyl group was selectively removed to yield (XII) (mp. 202.5-205.50 (decompd.). IR $\left.3380 \mathrm{~cm}^{-1}(\mathrm{OH}), 1615 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{COPh})\right) . \quad($ Chart 2$)$

When compared with Masamune's compound $13 a^{1}$) havine same platie stranture, our compound gave a similar ffe chant, but they could not be reparded
identical as judged from their distinctly different behaviour on TLC, rendering probable that (XII) belongs to isoajmaline species.

$$
X I V \longleftrightarrow X I V a
$$

 ($\mathrm{IR} 2730 \mathrm{~cm}^{-1}(\mathrm{CHO}), 2250 \mathrm{~cm}^{-1}(\mathrm{CN}), 1725 \mathrm{~cm}^{-1}(\mathrm{CHO}), 1635 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{COPh}), \mathrm{NMR}_{\mathrm{CDC1}}^{3}$ CHO 0.5 т yield 80%) via several steps (Chart 3), which was reduced with NaBH_{4} to furnish (XV) (mp. 125-127 ${ }^{\circ}$).

On the other hand isomerization of (XIV) to (XIVa) ($\mathrm{NMR}_{\mathrm{CDC1}}^{3}$ CHO 0.2 T) was effected by treating with alumina in benzene solution to give an equilibration mixture of (XIV) and (XIVa) in an approximate ratio of $3: 2$. On being reduced with NaBH_{4} (XIVa) gave the corresponding alcohol (XVa) (mp. $230-233^{\circ}$ (decompd.), IR $3380 \mathrm{~cm}^{-1}(\mathrm{OH}), 2250 \mathrm{~cm}^{-1}(\mathrm{CN}), 1615 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{COPh})$) in good yield, which was found to be identical with (XII) mentioned above. Synthesis of isoajmaline thus became feasible.

For isoajmaline synthesis (XVa) could now be used as a relay substance. This was oxidized with DMSO-Ac ${ }_{2} 0$ back to the aldehyde (XIVa) in 80% yield, which was equilibrated to give (XIV), followed by treatment with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcOH}$ containing hydrogen chloridegas. The resultant compound (XVI) (IR $3520 \mathrm{~cm}^{-1}(\mathrm{OH}), 2250 \mathrm{~cm}^{-1}$ $(\mathrm{CN}), 1740 \mathrm{~cm}^{-1}\left(\mathrm{O}_{-\mathrm{COCH}}^{3}\right), 1630 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{COPh}), \mathrm{UV} \quad \lambda \underset{\max }{6 \mathrm{~N} . \mathrm{HCl}_{2}} 24,243,234 \mathrm{~m} \quad(\varepsilon=8000$, 10800, 13500$), \lambda \underset{\max }{\operatorname{EtOH}_{292}} 244 \mathrm{~m} \quad(\varepsilon=2500,13700)$, yield $\left.30 \%\right)$ was subjected to hydrogenolysis over $\mathrm{PLO}_{2}-\mathrm{Pt}$ catalyst in 6 N - HCl solution, affording (XVII) (mp. 204-206。, IR $2250 \mathrm{~cm}^{-1}(\mathrm{CN}), 1730 \mathrm{~cm}^{-1}\left(0-\mathrm{COCH}_{3}\right)$, yield 10%), of which $\mathrm{N}-\mathrm{CO}-\mathrm{Ph}$ was best reduced by treating first with the Meerwein reagent ($\mathrm{Et}_{3}{ }_{\mathrm{O}}^{\mathrm{O}} \mathrm{BF}_{4}^{-}$) followed by reduction with $\mathrm{NaBH}_{4}{ }^{7}$) to yield (XVTIJ) (mp. 195-1970, IR $3570 \mathrm{~cm}^{-1}$, $3400 \mathrm{~cm}^{-1}(\mathrm{OH}), \cdot 2250 \mathrm{~cm}^{-1}(\mathrm{CN})$, yield $\left.85 \%\right)$. Usual reductive debenzylation converted

the latter into (XIX), whose m.p., $[\alpha]_{\mathrm{D}}$ and $I R$ data tallied with those of the authentic sample ${ }^{6}$). Since the conversion of (XIX) into isoajmaline (I) has already been accomplished by Prof. Sir Robert Robinson et al ${ }^{6}$, total synthesis of (土)-isoajmaline was now achieved by our present work. (Chart 4)

Remarks will be made on the results on isomerization experiments of some of the intermediate compounds.

When allowed to stand overnight in $1 \%-\mathrm{MeOH}-\mathrm{NaOH}$ solution at 27°, about a half of (XVa) isomerizes to (13a) and vice versa to give an equilibration mixture of both compounds, while (XV) is stable under the above conditions.

Acknowledsement

We express our hearty gratitude to Professor Six Robert Robinson for a generous donation of a large quantity of ajmaline, which enabled us to carry out the present work. Thanks are also due to Prof. emeritus S. Sugasawa, Prof.Y. Ban and Dr. M. Kawanishi for their pertinent advice, and Mr. M. Yamazaki, head of this laboratory for his unfailing interest throughont this work.

References

1) S.Masamune, S.K.Ang, C.Egli, N.Nakatsuka, S.K.Sarkar, Y.Yasunari, J.Am.Chem.Soc., 89, $2506(1967)$.
2) N.Yoneda, Chem. Pharm. Bul1.,13,622,1231(1965).
3) E.J.Corey, M.Chaykovsky, J.A.Chem.Soc., 87,1353(1965).
4) M.N.Rerick, E.L.Elicl, J.Am.Chem.Soc., 84,2356(1962).
5) W.Nagata, S.Hirai, H.Itazaki, K.Takeda, J.Org.Chem., 26,2413(1961).
6) F.A.L.Anet, D.Chakravarti, Sir R.Robinson, E.Schlittler, J.Chem.Soc., 1242(1954).
7) R.F.Borch, Tetrahedron Letters, 61 (1968).

[^0]: *The IR spectra were taken in CHCl 3 unless stated otherwise.

